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and then look for those values of A other than 0 or 
which cause the r ight-hand side of (25) to vanish. 

In practice it has been observed that there is only one 
such value, ,4 0 , which is the root, when it exists, of  
a t ranscendental  equation. As a consequence,  there 
may be a dip at the centre of the reflection and a 
max imum at ,40. Notice that the existence of the dip 
is not confined to the approximate  solution (22) in 
which case it could be a mathemat ica l  artefact. 

In conclusion,  we can say that the present investiga- 
tion has shown that, in the case of mult iple scattering 
of electromagnetic radiation,  in general there is coup- 
ling between the two states of  polarization either 
through the ampli tudes  or through the intensities. 
Only in the coplanar  case do the two X-ray com- 
ponents act independent ly  and can be decoupled.  The 
numerical  examples  which have been reported are 
the first exact or almost exact calculations of the effect 
of  mult iple reflections in a mosaic crystal within the 
limits of  validity of the transfer equations. These 
calculations show that appl icat ion of the kinematical  
approximat ion  to crystals having reflectivities com- 
parable  to those of copper can be grossly in error (up 
to a factor of  two) if  the crystal thickness is of  the 
order of  what is used in practice ( ~ o l -  1 for X-rays 

and /xo l -0 .01  for neutrons).  This discrepancy can 
be significantly reduced using the two-beam formulas;  
however, i f  one is interested in obtaining accurate 
structure factors, mult iple reflections have to be taken 
into account. Equations (22), (23) and (24) can be 
very useful for this purpose, part icularly in the case 
of neutrons. 

We thank V. Contini  for many helpful discussions. 
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Abstract 

An extension of  the maximum-ent ropy  (ME) data- 
restoration method is presented that is sensitive to 
periodic correlations in data. The method takes 
advantage of the higher  signal-to-noise ratio for 
periodic informat ion  in Fourier  space, thus enhancing  
statistically significant frequencies in a manner  which 
avoids the user bias inherent  in conventional  Fourier  
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filtering. This procedure incorporates concepts under- 
lying new approaches  in quantum mechanics  that 
consider entropies in both position and momen tum 
spaces, a l though the emphasis  here is on data restor- 
ation rather than quantum physics. After a fast Four- 
ier transform of the image, the phases are saved and 
the array of  Fourier  modul i  are restored using the 
maximum-ent ropy  criterion. A first-order continu- 
ation method is introduced that speeds convergence 
of the M E computat ion.  The restored modul i  together 
with the original phases are then Fourier inverted to 
yield a new image; tradit ional  real-space ME restor- 
ation is appl ied to this new image complet ing one 
stage in the restoration process. In test cases with 
various types of added noise and in examples  of  
normal and high-resolution electron-microscopy 
images, dramat ic  improvement  can be obtained from 
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two to four stages of iteration, even in cases where 
traditional ME restoration provides little improve- 
ment. It is shown that in traditional Fourier filtering 
spurious features can be induced by selection or elimi- 
nation of Fourier components without regard to their 
statistical significance. With the present approach 
there is no such freedom for the user to exert personal 
bias, so that features present in the final image and 
power spectrum are those which have survived the 
tests of statistical significance in both real and Fourier 
space. However, it is still possible for periodicities to 
'bleed' across sharp boundaries. An 'uncertainty' rela- 
tion is derived describing the inverse relationship 
between the resolution of these boundaries and the 
level of noise that can be eliminated. 

Introduction 

Image reconstruction using digital filtering techniques 
has become an important part of analysis and inter- 
pretation of images in general, and electron micro- 
graphs in particular. Because of the many difficulties 
inherent in high-resolution microscopy, including 
sample preparation, microscope tranfer aberrations 
and beam sensitivity, the images obtained are often 
not readily interpretable and so digital restoration 
techniques utilizing both direct image and Fourier- 
transform data have been developed. For the interpre- 
tation of data from periodic structures, Fourier-space 
data offer the advantage of condensing a great deal 
of structural detail into discrete Fourier-lattice spikes, 
often leading to a much higher signal-to-noise ratio 
than in the direct image. However, recent work has 
shown that conventional Fourier filtering may lead 
to spurious features (Forslund, 1969; Pradere, Revol, 
Nguyen & Manley, 1988). The user can create artifacts 
from noisy data by arbitrarily selecting certain Fourier 
components and masking others. 

The concept of the 'entropy' of a probability distri- 
bution was developed by Shannon & Weaver (1949), 
and the use of a 'maximum-entropy' principle was 
proposed by Jaynes (1957) as a means of choosing 
with minimum bias between several feasible outcomes 
of a given experiment. Maximum-entropy methods 
have been applied to many types of data including 
radio-astronomy images, X-ray tomography, NMR 
and X-ray diffraction (Gull & Skilling, 1984). The use 
of ME procedures has become very important in 
astronomy (Narayan & Nityananda, 1986), and the 
possibility of extending these techniques for use in 
electron microscopy has been suggested (Frieden, 
1987). 

It has been proven in rigorous mathematical argu- 
ments that the maximum-entropy formalism is the 
only data restoration method that does not introduce 
correlations in data (Shore & Johnson, 1980, 1983). 
In cases where data are related to the observed object 
by a known linear transformation, such as convo- 

Table 1. Comparison between sequential maxent and 
direct methods 

Sequent ial  maxen t  

Raw data from real space 
All Fourier-space features tested 
for statistical significance 
Fourier moduli calculated from 
real-space data 
Entropy defined in both spaces 
Phases known from data 
Unique solution 

Direct  me thods  

Raw data from Fourier space 
Only data from Fourier "lattice' 
sites used 
Fourier moduli measured 
experimentally 
Entropy defined only in real space 
Phases calculated from model 
Non-unique solution 

lution with a point-spread operator (or 'blurring' 
operator), there is guaranteed a unique solution to 
the maximum-entropy equations for any assigned 
value of the experimental variance (Gull & Skilling, 
1984). 

The analogy between the maximum-entropy 
approach and the 'direct methods' of phase determi- 
nation in X-ray crystallography has been presented 
in detail (Bricogne, 1984), and recently the constraint 
of atomicity due to Sayre (1952) has been shown to 
be an expansion to second order of the entropy 
operator in real space (Harrison, 1987). In direct 
methods of crystallography, the experimental data 
are available in Fourier space as integrated Bragg 
reflection intensities, which ideally means that esti- 
mated experimental variances are low owing to samp- 
ling from a very large number of periodic units in the 
real object. 

In the context of the present paper, direct methods 
of crystallography are viewed as belonging to a gen- 
eral class of maximum-entropy reconstruction 
methods in which the entropy functional is defined 
in real space while the error criterion is enforced in 
Fourier space. The goal of crystallographic recon- 
struction is to find that distribution of electron density 
in real space which maximizes the real-space entropy 
functional subject to the constraint that the sum of 
the squared deviations of the predicted Fourier 
moduli from the observed moduli be less than the 
estimated error. 

The similarities and contrast between our method, 
which we refer to as 'sequential maxent', and direct 
methods of phase determination in crystallography 
are summarized in Table 1. 

Maximum-entropy reconstructions perform well 
when the real-space object consists of point sources, 
as in atronomy or crystallography (Gull & Skilling, 
1984). However, the method works poorly when the 
real-space data are all of nearly the same value. 
Furthermore, uniqueness of the solution is lost with 
the loss of phase information, because distinct real- 
space objects can have rigorously the same Fourier 
intensities. Loss of uniqueness occurs because 
without phase information the relation between the 
object and the observed data is nonlinear (Bryan & 
Skilling, 1986). 



688 MAXIMUM ENTROPY DATA RESTORATION 

Our interest is in the most general case of image- 
data reconstruction where the both the real (or 
'particle') and Fourier (or 'wave') aspects of our 
experimental data are tested for statistical sig- 
nificance. We are particularly interested in boundary 
and defect regions in low-dose high-resolution elec- 
tron micrographs. Finally, although electron diffrac- 
tion yields useful information, scattering techniques 
usually average over large areas of sample and there- 
fore information from defects, which are typically 
dilute, is lost. Also, the size, shape and relative 
orientation between individual crystalline domains 
and defects is not known. Thus, our goal is to take 
full advantage of this higher degree of structural detail 
that can be obtained from electron micrographs. 

It should be mentioned that for simpler problems, 
such as unit-cell reconstructions for objects with peri- 
odic order which extends homogeneously throughout 
the sample, there exist other bias-free techniques 
combining electron diffraction data with electron 
micrographs. Examples are the iterative procedure of 
Gerchberg & Saxton (1971, 1972), and the extension 
of the direct method by Fan Hai-fu, Zhong Zi-yang, 
Zheng Chao-de & Li Fang-hua (1985). The basic 
philosphy of such methods is that the electron diffrac- 
tion pattern provides the Fourier moduli, while the 
phase information is available from the electron 
micrograph. For the more general problem of restor- 
ing an image with information on defects, grain 
boundaries, or polycrystalline regions, it is not often 
experimentally possible to obtain an electron 
diffraction pattern and an electron micrograph that 
correspond to exactly the same state of the sample, 
particularly for radiation-sensitive materials. A fur- 
ther complication is that for certain samples (e.g. 
block copolymers), the features of interest are so large 
that diffraction experiments would have to be per- 
formed at unfeasibly small angles. 

Summarizing our requirements, we want the 
restoration method to: 

(1) enhance periodic correlations in the data; 
(2) use information only from the image itself; 
(3) be free from user bias. 
Traditional Fourier filtering satisfies (1) and (2) 

but not (3), as has been shown (Forslund, 1969; 
Pradere et al., 1988) and which we demonstrate in 
the Results section. However, if the Fourier moduli 
are restored not by filtering but rather by applying 
the principle of maximum entropy, the third require- 
ment can also be satisfied. The Fourier moduli are 
particularly well suited for ME restoration, because 
the distribution of moduli is more localized than the 
original distribution of real-space densities for the 
cases of interest here, and the ME method is known 
to perform well for point sources (Gull & Skilling, 
1984). 

In the next section we describe our method in detail. 
Our approach differs from previous M E formulations 

which consider the Fourier representation of data 
(Bryan & Skilling, 1986) in that the entropy in the 
Fourier-space iteration step is calculated from the 
Fourier moduli of the original image. The second step 
in each cycle is an ordinary real-space ME restoration. 

In the Results section we apply the method to 
synthesized data and to actual electron-microscopy 
data. One ofthe latter examples is of a grain-boundary 
region in a radiation-sensitive polymer where tech- 
niques designed for unit-cell reconstruction do not 
apply and where radiation sensitivity precludes the 
possibility of combining electron microscopy and 
electron diffraction. 

The Discussion section focuses on the tendency we 
have found for frequencies which are enhanced in 
the image to 'bleed' across sharp boundaries. We 
show how to estimate the extent of the bleeding, but 
emphasize that this is at present a difficulty with the 
method which needs to be addressed. We are hopeful 
that an algorithm which maximizes the real- and 
Fourier-space entropies simultaneously, rather than 
iteratively, may be helpful in this regard. 

Method 

The basic philosophy of maximum-entropy-data 
reconstruction is to find that image out of all the 
possible 'guess' images which maximizes the entropy 
functional 

Q = - Y ~ [ p i i n p i ] - h  Y~[(d,-f)2/o'2], (1) 

where {f} are the estimates to the original data {di}. 
The {p~} are the 'probabilities' associated with the 
pixels i, and are defined as p , = f / ~ { f } .  Thus, 
Y~ {p~} = 1.0. Q has two components, the first being 
the entropy of the probability distribution {p,} and 
the second being the deviation of the reconstruction 
from the measured data. The entropy term is the 
general form for a probability distribution {p,} sug- 
gested by Shannon (1948), and is similar to the 
Boltzmann entropy of statistical thermodynamics. 
The second term is a X 2 constraint C imposed due 
to the experimental data {d~} and h represents a 
Lagrange multiplier whose final value is related to 
the quality of the data {d,}. h is chosen so that the 
X 2 constraint C =Y. (d~-f)2/o2 is equal to N in the 
final solution. As the quality of the data improves 
and o- decreases, deviations of the estimates {f} from 
the original data {d~} become more costly and the {f} 
which finally maximizes Q is close to {d~}. For large 
values of o-, the entropy term dominates and the result 
is a flat featureless image. 

The entropy functional Q,,=S~-AC can be 
defined for any set of conditional probabilities {p~}. 
However, using this functional alone ignores any 
spatial relationship {x~} between the individual events 
p~. In many sets of data, in particular any image, there 
is an explicit spatial relationship between the 
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intensities Pi. In other words, the values of {Pi} are 
not independent. 

In traditional ME reconstructions the known 
spatial relationship between events is incorporated 
by considering that in an experiment there is a point 
spread function (p.s.f.) b which causes a data point 
in the original 'blurred'  object to be spread over 
several pixels in the final image (Gull & Skilling, 
1984). The point spread function is usually assumed 
to be a linear convolution with every point in the 
original object. This is mathematically equivalent to 
Fourier transforming the object f~ to Fk, multiplying 
by B, the Fourier transform of b, and inverse trans- 
forming. If the p.s.f, is not known, it can be estimated 
as a function in the ME reconstruction (Gull & 
Skilling, 1984). 

We have found that it is useful to assess the statis- 
tical significance of the frequency characteristics of 
an image by applying the principle of maximum 
entropy in Fourier space. Since the Fourier transform 
of the object gives an array of complex numbers Fk 
which is itself an 'image', it is possible to consider a 
'Fourier-space entropy'  by taking the normalized 
magnitudes of the complex numbers Fk as proba- 
bilities themselves. This new entropy term takes into 
account the spatial relationships in the real-space 
data {di}. 

Recent work in quantum mechanics using entropies 
defined in both spaces has helped in refining estimates 
of wave functions (Gadre, Bendale & Gejji, 1985; 
Gadre & Bendale, 1985a). Gadre & Bendale (1985b) 
have suggested a new maximum-entropy principle 
which states that it is the sum of the real-space and 
Fourier-space entropy which should be maximized. 
Here, we investigate the application of this principle 
to observable data. We make a first approximation 
to the 'maximum-sum' idea by applying maximum 
entropy iteratively in Fourier space and in real space. 

The relationship between our method and that 
proposed by Gadre & Bendale (1985b) is shown 
schematically in Fig. 1. Consider a real-space wave 
function ~ ( x )  and its Fourier transform in momen- 
tum space qb(k). The wave function gr(x) gives rise 
to a real-space probability distribution p(x) upon 

p(x) ~ P'(k) ~/(x) ~*(x) - - >  

I 
~b(k) qb*(k) - - >  P(k) ~-~ p'(x) 

Fig. 1. Schematic of the relationship between probability functions 
in real and Fourier space, gt(x) and 4~(k) are complex Fourier- 
transform pairs, giving rise to probabilities p(x) and P(k). The 
Fourier transform ofp(x) is P'(k), which is not the same as P(k). 

multiplication with its complex conjugate gt*(x); 
likewise, crp(k)crp*(k) generates a momentum-space 
probability P(k). The functions p(x) and P(k) are 
not Fourier-transform pairs; the Fourier transform of 
p(x) is P'(k), while the Fourier transform of P(k) is 
p'(x). Since p(x) and P(k) represent probability dis- 
tributions they are always real and positive, whereas 
P'(k) and p'(x) are in general complex. The transfor- 
mation from qt(x) or qb(k) to p(x) or P(k) respec- 
tively is irreversible; having complete information 
about p(x) does not mean that ~ ( x )  can be deter- 
mined. 

Gadre & Bendale (1985b) calculate the entropy 
functional using the integral form with p(x) and P(k). 
This is possible because the starting point is ~ ( x ) ,  
obtained from quantum calculations. In our case, we 
have information only about the real-space probabil- 
ity distribution p(x). Therefore, in order to calculate 
the entropy in Fourier space we Fourier transform 
p(x) to P'(k) and then define an entropy S~, 

S ~ , = - ~  P~, In P~,, (2) 

where P~, are the normalized moduli of P'(k). By the 
convolution theorem, P'(k) is the autocorrelation 
function of ~ (k ) .  

The numerator of the constraint term is the sum 
over the squared differences between {f} and {di} in 
real space or {Fk} and {Dk} in Fourier space. By 
Parsevars theorem it can be shown that these two 
terms are equivalent as long as the phase of each Fk 
is left equal to that of the corresponding Dk. Since 
in our method we mandate that the phases for Fk 
remain the same as for Dk, it does not matter whether 
we choose to calculate the constraint term in real or 
Fourier space. 

On the other hand, the entropies Sx and S~, are not 
the same for a given image. To address the full infor- 
mation content of a signal, it seems necessary to 
consider both its 'particle' and its 'wave' characteris- 
tics. Indeed, it has been noted by Bialynicki-Birula 
& Mycielski (1975) that it is possible to recast the 
Heisenberg uncertainty principle in the more general 
form 

Sx+ Sk >-3Np[l +ln ('n')]. (3) 

This says that the sum of the real-space entropy and 
Fourier-space entropy is always greater than a con- 
stant which depends on the sumber of particles Np 
in the system. 

Our algorithm is represented schematically in Fig. 
2. First, the original data set {di} is Fourier trans- 
formed to form a complex data set with moduli {Fk} 
and phases {Ok}. Then, the phases {Ok} are stored and 
a maximum-entropy reconstruction to a new set of 
Fourier moduli {F~'} is performed. The moduli {F~'} 
are then recombined with the phases and inverse 
Fourier transformed to form a real-space image {f}. 
Finally, a real-space maximum-entropy restoration is 
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performed to give a new estimate in real space {f~}. 
The process can now be repeated using the new set 
of {fT'}'s. 

Our computational scheme for the maximum- 
entropy reconstruction follows that used by Moriarty- 
Schieven, Snell, Strom, Schloerb, Strom & Grasdelen 
(1987) which is itself an extension of the analysis by 
Willingdale (1981). A maximum in the entropy func- 
tional is found when the transcendental equation 

r " = j e x p [ A ( b * d " - b * b * r " ) ]  (4) 

is solved. Here, r" is the reconstructed image ({F~'} 
or {f~'} in our case), dr, the original data ({Dk} or 
{di}), b the point spread function, j a normalizing 
constant to preserve flux, and * the convolution 
operator. The value of A is related to the error o- in 
the data and is the only parameter in the reconstruc- 
tion. With information about the average error in the 
data tr it is possible to choose A so that the g 2 
constraint C is equal to N. By using original data 
and adding noise, Moriarty-Schieven et al. (1987) 
showed that there is an optimum choice for A which 
minimizes the error between the reconstruction and 
the 'noise-free' data. As A increases the error between 
the reconstruction solution and d a t a  first decreases 
and then increases as the reconstruction begins to fit 
the noise. At present, we are unsure of the error cr in 
our data and therefore use the reconstruction as a 
means of its estimation. Once tr is more well known 
it will be possible to constrain the problem further 
so that there are no adjustable parameters. 

In order to improve the rate of convergence of the 
method, a first-order continuation was performed 
which takes into account the expected variation in r,, 
due to a change in A. These first-order continuation 
procedures have proven very effective, for example, 

D a t a  

] 
I F F T  

1 ' 
M a x E n t  M a x E n t  I I 

I 

fi F~ . . . . .  ; 

Fig. 2. Schematic of the iterative algorithm used in this paper. 
First, the original data d, are Fourier transformed to create a 
set of moduli Fk and their associated phases. Maximum-entropy 
techniques are applied to Fk to create a new set of amplitudes 
F~', these are then recombined with the original phases and 
inverse Fourier transformed to create a new real-space array f,. 
Maximum entropy is then performed on f, in real space to create 
f~". The new real-space estimatef~ may be Fourier transformed 
to restart the cycle. 

in finite element algorithms (Silliman, 1979). If we 
approximate the Jacobian as diagonal, 

(OE,,IOr,,)(Or"IOA)+(OE,,laA)=O (S) 

when the solution is found. Thus, 

{1 + NA exp[A(dm-r")]}(Arm/AA ) = - r m ( d " - r , , )  

(6) 
o r  

Ar, ,=- (AA)r , , (d" -r , , ) / { l+  NA exp [A (d" - r,,)]}. 

(7) 

The idea behind this approach is to keep the residuals 
dE,, close to zero when A is incremented. During the 
ME reconstruction, A was slowly increased until the 
correct value of A was reached. This first-order con- 
tinuation scheme allowed us to estimate the expected 
change in r,, due to a small change in A and thus 
speed convergence. 

We have found that best results are obtained if the 
average value of the Fourier transform is first set to 
zero. This is done simply by setting the intensity at 
the origin pixel to zero. In the FFT algorithm, the 
intensity in this single pixel transforms to a uniform 
signal over all of Fourier space, thus artificially raising 
the entropy due to a decrease in relative varihtions. 
Furthermore, the average pixel intensity was sub- 
tracted before evaluating the Fourier transform. This 
eliminated the large spike at the origin which other- 
wise tended to dominate the Fourier-space maximum- 
entropy step. 

In using this sequential ME algorithm there is no 
freedom for the user to enhance frequencies of inter- 
est. The frequencies in the image which survive are 
those which pass the test of statistical significance 
imposed by the Fourier-space maximum-entropy 
step. 

The following simple example shows clearly how 
features can be induced in a noisy image by choosing 
frequencies without concern for their statistical sig- 
nificance. Fig. 3(a) shows a noisy image that was 
created by placing 10 000 spots of intensity with radii 
of mean zero and standard deviation 5 pixels ran- 
domly on a 128 x 128 array. Fig. 3(b) shows the result 
of conventional Fourier filtering, where a randomly 
chosen frequency was extracted. The scaling of pixel 
intensities was kept the same as in Fig. 3(a)  so a direct 
comparison could be made. Note that the chosen 
frequency is indeed 'supported'  by the noisy data, 
giving rise to a reconstruction that could possibly be 
misinterpreted as representative of some type of peri- 
odic structure. 

Results 

In this section we apply the new method to several 
fabricated images, and to actual TEM micrographs 
from two polymer materials of particular interest in 
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our group. The quality of the final reconstructed 
images will be assessed on two grounds: first, the 
clarity and symmetry of those statistically significant 
periodicities which are restored, as evidenced in both 
the final image and its transform; and second, the 
faithful reproduction of sharp boundaries for these 
periodicities, with bleeding kept to a minimum. We 
also use a fabricated image in a critical assessment 
of the singular-value-decomposition (SVD) image- 
restoration technique. 

(a) 

(b) 

Fig. 3. (a) 128 x 128 pixel noisy image created from 10 000 Gaussian 
spots with radius of  mean zero and standard deviation of  five 
pixels. (b) Reconstructed image formed by choosing an arbitrary 
frequency and inverse transforming. The image has a set of  
bands with apparent 'dislocations' and other anomalous features 
for which there is no statistical support  in the data. 

Fig. 4(a) shows a simulated image of a simple 
sinusoidal periodicity with noise added. The noise 
consists of 40 sine waves each of random wavelength 
and direction, with intensities randomly.distributed 
between 0 and 15% of the primary periodicity. 
Fig. 4(c) shows the final result after applying a com- 
plete full Fourier-space and real-space restoration 
cycle. The results of a single restoration cycle in this 
example show remarkable image enhancement in real 
space; it is now an easy matter to distinguish the 
primary periodicity. 

Figs. 4(b) and (d) show the power spectra of Figs. 
4(a) and (c), respectively, and it is here that the 
reason for the dramatic improvement during the 
Fourier-space restoration step is most evident. These 
and all subsequent power spectra are presented on a 
logarithmic scale to allow weaker components to be 
easily discerned. The primary periodicity is circled in 
Fig. 4(b); in Fig. 4(d) it stands clearly above the now 
supressed 'noisy' frequencies. Note that the strong 
horizontal and vertical streaks in Fig. 4(b) due to 
aliasing at the edges of the figure have been sup- 
pressed. The influence of the effective point spread 
function of the simulation is seen in Fig. 4(d) as a 
damping of high-frequency information. The discrete 
nature of both the primary periodicity and the noise 
in Fourier space makes the new restoration method 
particularly effective and transparent in this simple 
example. 

In the next two examples, we impose a sharp boun- 
dary on the primary periodicity in order to assess the 
extent of bleeding. In Fig. 5(a) the same periodicity 
as in the previous example has been given unit 
intensity on the left half of the image, and noise added 
to the entire image. The noise consists of 40 sine 
waves as in the previous example, but in this example 
the intensity of a wave is randomly distributed 
between 0 and 30% of the primary-wave intensity. 
Fig. 5(b) shows the image resulting from one cycle 
of restoration. While the primary periodicity appears 
clearer on the left side of the image, it can be seen 
that this periodicity has bled onto the right side. This 
can be most easily seen by viewing the figure at a low 
angle parallel to the direction of the fringes. Thus the 
new method has created an artifact. 

At this noise level, some of the added sine waves 
have sufficient intensity - close to 30% of that of the 
primary periodicity - that the maximum-entropy 
technique evaluates them to be statistically signi- 
ficant in both real and Fourier space, and thus 
regardless of the number of restoration cycles the 
image cannot be reduced to the primary periodicity 
alone. 

In the next example (Fig. 6), the same primary 
periodicity as in the previous example has been given 
unit intensity on the left half of the vertical center 
line, and then noise has been added to the entire 
image. The noise in this case consists of the superposi- 
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tion of 250 aperiodic waves of the functional form: 

a,, sin [ b,,(iG + C,]) I/2] (8) 

G = ax,  +/3x2 (9) 

where the intensity is randomly distributed between 
0 and 25%. The parameters a and /3 are the com- 
ponents of  a vector which determines the direction 
of the wave. Contrary to the previous example, this 
noise does not have a discrete Fourier transform. The 
high level and large number of noise components in 
this example makes the primary periodicity very 
difficult to see in the unrestored image, even when 
the observer knows its exact location. 

Fig. 6(b) shows the image resulting from two cycles 
of restoration. The primary periodicity on the left is 
now clearly visible, and the vertical boundary appears 

to be sharp. However, owing to the high noise level, 
it is difficult to judge from the real-space image 
whether or not bleeding has occurred on the right 
side. This determination must be made using the 
Fourier transform. Fig. 6(c) is the power spectrum of 
Fig. 6(a);  the peak corresponding to the primary peri- 
odicity is circled. Figs. 6(d) and (e) are the power 
spectra of the right side of Fig. 6(a) before and after 
restoration. Note that in Fig. 6(d) there is no support 
for the primary periodicity, whereas in the final image 
there is indication of the primary periodicity on the 
right side of the figure. Therefore bleeding has 
occurred. However, the intensity of the circled peak 
is on the order of  the noise level in the restored power 
spectrum, thus explaining why the bleeding cannot 
be distinguished above the background noise in 
Fig. 6(b). 

(a) (b) 

(c) (d) 

Fig. 4. (a) 128 x 128 pixel image ofa sinusoidal periodicity with added noise of 40 sine waves each of random wavelength and direction, 
with intensity randomly distributed between 0 and 15% of the primary periodicity. (b) Log of the power spectrum of (a). The sine 
waves generate strong peaks with associated horizontal and vertical 'streaking' due to aliasing when the sine waves meet the edge 
of the frame. (c) Reconstructed image after one cycle of the iterative maximum-entropy scheme. (d) Log of the power spectrum of 
(c). The noisy waves have been considerably damped but are still visible on a log scale. 



DAVID M. ANDERSON,  DAVID C. MARTIN AND EDWIN L. THOMAS 693 

The next two examples are actual electron micro- 
graphs of polymeric samples with interesting periodic 
structures. Fig. 7(a) is a digitized micrograph of a 
triply periodic morphology that has recently been 
discovered in block copolymers called the ordered 
bicontinuous double-diamond (OBDD) structure 
(Thomas, Alward, Kinning, Martin, Handlin & 
Fetters, 1986). This structure is modeled well by two 
imbedded periodic surfaces of constant mean cur- 

' , 

(a) 

(b) 

Fig. 5. (a) 128 x 128 pixei image with a strong sinusoidal periodic- 
ity on the left half of  the image and 40 sine waves with intensities 
randomly distributed between 0 and 30% of the primary perio- 
dicity. (b) Image after one cycle of the restoration. The left side 
of the image is clearer, but the periodicity can also be seen on 
the right when viewed carefully at a glancing angle. 

vature which divide space into three regions. Two of 
these regions are congruent and have diamond sym- 
metry (Anderson & Thomas, 1988). 

Fig. 7(a) was taken at a magnification of 33 000x 
and digitized directly using a 50 ~m spot size with 
an Optronics P-1000 scanning microdensitometer. An 
8-bit intensity resolution for an optical density range 
of 0-2 was used. The image shown is a 128 x 128 pixel 
region. This structure is formed in a microphase 
separated sample of a star diblock copolymer of 
poly(styrene) and poly(isoprene). The regions of 
poly(isoprene) have been stained dark by exposure 
to OsO4 vapor. 

Fig. 7(c) is the result after two complete cycles 
of restoration. Considerable symmetrization has 
occurred, and the image appears smoothed and 
clarified as evidenced by the uniformity from unit 
cell to unit cell. This uniformity does not extend to 
the edges of the image, and in fact a general rule is 
that the borders of an image restored with the present 
method are susceptible to artifacts. In unit-cell recon- 
structions, this does not pose a serious problem, and 
neither does bleeding, because the primary concern 
is to obtain a single symmetrized unit cell. 

Figs. 7(b) and (d) show the power spectra before 
and after restoration respectively. As is evident, the 
main source of the dramatic improvement from 
Fig. 7(a) to Fig. 7(c) is due to a clarification of the 
power spectrum. Fig. 7(e), which is a restoration of 
Fig. 7(a) using only real-space maximum entropy, 
does not show much improvement in clarity, nor any 
enhancement in symmetry, as compared with the 
improvement evident in Fig. 7(b). Note that the struc- 
ture in the power spectrum Fig. 7( f )  is not nearly as 
developed as in Fig. 7(d). 

Fig. 8(a) is a low-dose high-resolution electron 
micrograph of a fiber sample of poly{(benzo[1,2-d: 
4,5-d']bisthiazol-2,6-diyl)-l,4-phenylene} (PBZT), a 
rigid-rod polymer which crystallizes in a monoclinic 
space group (Roche, Takahashi & Thomas, 1980; 
Odell, Keller, Atkins & Miles, 1981). The strong 
equatorial reflections which can be imaged by HREM 
in this material are the 0.36 nm (010) and 0.59 nm 
(100) planes which represent the lateral packing 
between adjacent chains. We have selected a micro- 
graph that captures an apparent grain-boundary 
region, with 0.59 nm fringes on the lower left meeting 
0.36 nm fringes on the upper right. This image was 
formed by digitization of an intermediate negative 
produced by enlarging the original low-dose HREM 
image. The final sampling rate was 0.072 nm pixel -~ 
Whereas all of the images so far in this section have 
been 128 x 128 pixels, this example is 256 x 256. 

Fig. 8(b) shows the resulting image after three 
cycles of ME restoration. The periodicities have been 
brought out and clarified dramatically. Fig. 8(c) is 
the same region restored using traditional Fourier 
filtering. This image was formed by calculating the 
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(a) 
(b) 

(¢) (d) 

(e) 

Fig. 6. (a) 128 x 128 pixel image with the same periodicity as in 
Fig. 5, but now obscured by 250 waves of aperiodic noise 
randomly distributed from 0 to 25% of the primary periodicity. 
(b) Image after two restoration cycles of the sequential 
maximum-entropy algorithm. (c) Log of the power spectrum of 
(a). The primary periodicity is circled. (d) Log of the power 
spectrum of (a) with the left side set equal to zero. The primary 
periodicity is absent. (e) Log of the power spectrum of (b) with 
the left sicle set equal to zero. The fact that the primary periodicity 
can be detected (circle) confirms that bleeding has occurred. 
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FFT, selecting only those frequency components 
whose moduli were above an arbitrary background, 
and inverse transforming. Although the images in 
Figs. 8(b) and (c) are similar, the ME image retains 
features which are statistically significant yet are 

eliminated by the Fourier approach. It would be 
tempting to make more substantial statements about 
the structure of the grain boundary from these data, 
however until the bleeding problem is resolved we 
are hesitant to do so. 

(a) (b) 
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Fig. 7. (a) 128 x 128 pixel digitized micrograph of the ordered bicontinuous double-diamond structure in a block copolymer. Sampling 
rate 1.5 nm pixel -~. (b) Log of the power spectrum of (a). (c) (a) after two complete cycles of sequential maximum-entropy restoration. 
(d) Log of the power spectrum of (c). (e) (a) restored using only real-space maximum-entropy reconstruction. ( f )  Log of the power 
spectrum of (d). 
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The final example in this section is intended to test 
claims in the literature (Andrews, 1976) that singular- 
value decomposition (SVD) can be used in image 
processing without the dangers of bleeding and ring- 
ing inherent in Fourier processing. SVD is a technique 
of decomposing an image into a set of 'eigenimages',  
each of which is associated with a particular eigen- 
value of the matrices G G  r and G ' G  where G T is 
the transpose of the original image G. The original 
image G can be reconstructed from the sum over the 
number of rows or colums M as 

G= ~ (E~2U.,V,,,), (10) 
i = l , M  

where E,, is t h e  ruth eigenvalue and U,,, are the 
column eigenvectors of G G  r, V,,, the row eigenvectors 
of GTG. 

Fig. 9(a)  shows a fabricated test image, in which 
a pentagon has been filled with a sinusoidal wave, 
and the aperiodic noise shown in Fig. 5(a) super- 
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posed over the entire image at the 30% level. Fig. 9(c) 
is the weighted sum of the five eigenimages having 
the largest magnitudes of the eigenvalues. Clearly 
bleeding has occurred. In fact, if a box is drawn with 
horizontal and vertical edges, this being the smallest 
such box containing the entire pentagon, then the 
primary periodicity seems to fill out this entire box. 
We conclude that, contrary to claims in the literature, 
SVD processing can cause significant bleeding. 

Discussion 

This section is devoted to a discussion of the bleeding 
problem, and possible means for its solution. We have 
seen that for unit-cell reconstruction bleeding is not 
a problem. However, in our studies we routinely deal 
with micrographs in which many crystallites with 
many orientations are imaged in the field of view, 
and at a level which is not dramatically above the 

(a) 
(b) 

(c) 

Fig. 8. (a )  256 x 256 pixel digitized low-dose high-resolut ion elec- 
tron micrograph  o f  PBZT. Sampling rate 0.072 nm pixel -~. (b) 
(a)  af ter  three cycles o f  sequential  max imum-en t ropy  restora- 
tion. (c) ( a )  res tored using Fourier  filtering where all o f  the 
frequencies  with moduli  below some arbitary level were set equal 
to zero. 
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noise level. In such instances artifacts resulting from 
Fourier filtering are known to be a serious problem. 

Let us now consider a specific example which will 
help us illustrate the expected extent of the bleeding 
problem in a general image-reconstruction effort. 
Although a one-dimensional example is used for sim- 
plicity, the extension to two (or more) dimensions is 
straightforward. 

Assume that the form of the image is a set of well 
defined fringes modulated by a 'shape factor' T which 
is equal to either 1 or 0 depending on whether the 
fringes are visible or not. 

Ix = A cos ( kox + O) Tx. (11) 

The Fourier transform of this object is a delta function 
at frequencies of +ko, convoluted with the transform 

q 

• r 

i t . ,  

of the object function Tk: 

Ik=A[8(k-ko)+6(k+ko)]* Tk. (12) 

If Tx is a rectangular function, then Tk takes the form 
of (sin Zk)/k, where 2Z is the dimension of T,,. In 
this formalism, Tk is the 'form factor' of the crystal- 
lites and the delta functions are the 'lattice'. Note 
that the form factor Tk depends on the shape of the 
crystailite region and will be different for different 
areas of the image. 

Bleeding occurs because the components of Tk 
which are low in magnitude cannot be separated from 
noise in Fourier space, and thus Tx cannot be repro- 
duced faithfully. Losing parts of Tk thus make the 
resulting T~, sharper, making T" broader than Tx, 
causing bleeding of the frequency. 

(a) (b) 

t 

(c) (d) 

Fig. 9. (a) 128 × 128 pixel test image of pentagon containing sinusoidal wave superimposed on noise similar to Fig. 5(a) at a level of 
30%. (b) Log of the power spectrum of (a). (c) Sum of the five eigenimages with the largest eigenvalues. (d) Log of the power 
spectrum of (c). 
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Let us define an error criterion E which measures 
the squared error between the unbled image and the 
bled image. By Parseval's theorem, this error can be 
defined in either real or Fourier space: 

E = ~ (Fk, -  Fk2) 2 dk, dk2 

=~J (Bd cos k~x) 2 dx, dx2, (13) 

where Bd is the average strength of the bleeding 
periodicity with frequency kb in real space. Evalu- 
ation of the second integral for an interface of length 
L with a width of bleeding W gives 

E>_(B2LW)/2. (14) 

A protocol for using this criterion is as follows. Let 
us assume we are interested in estimating the extent 
of bleeding W in an image. First, estimate the length 
of the boundary L. Then calculate the error integral 
E in Fourier space near the frequency of interest kb. 
Formula (14) then provides an estimate of the strength 
Ba of the bleeding. 

It has recently been shown that a localized entropy 
operator can be successful in edge detection 
(Shiozaki, 1986; Martin, 1988). Our approach sug- 
gests that a similar operator which includes the 
Fourier-space entropy term may be useful in detecting 
features which only significantly affect the Fourier- 
space entropy, such as the edges of faint periodicities 
on a noisy background. Such an algorithm would be 
quite useful for determining the boundaries of crystal- 
lites in low-dose HREM lattice images. 

The failure of SVD processing in preventing bleed- 
ing, as demonstrated in the last section, is particularly 
disappointing in that of all outer-product expansions 
of an image - which include as special cases Fourier, 
SVD and Hadamard expansions - the SVD expansion 
is considered to be the expansion in which the com- 
ponent images are most closely matched to the image. 
Therefore we are lead to believe that any outer- 
product expansion will be subject to bleeding 
artifacts. 

Resolution of the bleeding problem may await an 
algorithm which finds the maximum of the sum of 
entropy functionals Sx and S~ subject to the data 
constraint AC. However, this approach will require a 
memory-intensive and speedy algorithm since the 
FFT of the image will need to be part of the iteration 
step. 
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the PBZT HREM data, and to Dr David Kinning for 
obtaining the (111) projection of the OBDD structure. 
DCM thanks the Shell Company and the University 
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IBM Institute for Interface Science, AFOSR and URI 
for financial support. The algorithms used in this 
work were written in Fortran 77 and are available by 
request from the authors. 
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